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Abstract

Data on “neural coding” have frequently been analyzed using information-theoretic mea-

sures. These formulations involve the fundamental, and generally difficult statistical problem

of estimating entropy. We review briefly several methods that have been advanced to estimate

entropy, and highlight a method, the coverage adjusted entropy estimator (CAE), due to Chao

and Shen that appeared recently in the environmental statistics literature. This method be-

gins with the elementary Horvitz-Thompson estimator, developed for sampling from a finite

population and adjusts for the potential new species that have not yet been observed in the

sample—these become the new patterns or “words” in a spike train that have not yet been

observed. The adjustment is due to I.J. Good, and is called the Good-Turing coverage estimate.

We provide a new empirical regularization derivation of the coverage-adjusted probability esti-

mator, which shrinks the MLE. We prove that the CAE is consistent and first-order optimal,

with rate OP (1/ log n), in the class of distributions with finite entropy variance and that within

the class of distributions with finite qth moment of the log-likelihood, the Good-Turing cov-

erage estimate and the total probability of unobserved words converge at rate OP (1/(log n)q).

We then provide a simulation study of the estimator with standard distributions and examples

from neuronal data, where observations are dependent. The results show that, with a minor

modification, the CAE performs much better than the MLE and is better than the Best Upper

Bound estimator, due to Paninski, when the number of possible words m is unknown or infinite.

∗To appear in a special issue of Statistics in Medicine on neuronal data analysis.
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1 Introduction

The problem of “neural coding” is to elucidate the representation and transformation of information

in the nervous system. [17] An appealing way to attack neural coding is to take the otherwise

vague notion of “information” to be defined in Shannon’s sense, in terms of entropy. [20] This

project began in the early days of cybernetics [24, 11], received considerable impetus from work

summarized in the book Spikes: Exploring the Neural Code [18], and continues to be advanced by

many investigators. In most of this research, the findings concern the mutual information between

a stimulus and a neuronal spike train response. For a succinct overview see [4]. The mutual

information, however, is the difference of marginal and expected conditional entropies; to compute

it from data one is faced with the basic statistical problem of estimating the entropy1

H := −
∑
x∈X

P (x) logP (x) (1)

of an unknown discrete probability distribution P over a possibly infinite space X , the data being

conceived as random variables X1, . . . , Xn with Xi distributed according to P . An apparent method

of estimating the entropy is to apply the formula after estimating P (x) for all x ∈ X , but estimating

a discrete probability distribution is, in general, a difficult nonparametric problem. Here, we

point out the potential use of a method, the coverage adjusted estimator (CAE), due to Chao and

Shen [5], which views estimation of entropy as analogous to estimation of the total of some variable

distributed across a population, which in turn may be estimated by a simple device introduced

by Horvitz and Thompson [8]. We provide an alternative derivation of this estimator, establish

optimality of its rate of convergence, and provide simulation results indicating it can perform very

well in finite samples–even when the observations are mildly dependent. The simulation results

for data generated to resemble neuronal spike trains are given in Figure 1, where the estimator is

labeled CAE. In Section 2 we provide background material. Section 3 contains our derivation of

the estimator and the convergence result, and Section 4 the description of the simulation study and

additional simulation results.
1Unless otherwise stated, we take all logarithms to be base 2 and define 0 log 0 = 0.
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Figure 1: Comparison of entropy estimators in terms of root mean squared error, as a function of
sample size, for word lengths T = 6 from V1 data (left) and T = 15 from Field L data (right).
Full definitions are given in Section 4. The samples of size n are drawn from a stationary variable
length Markov chain (VLMC) [10] used to model neuronal data from visual (V1) and auditory
(Field L) systems. We followed the “direct method” and divided each sample sequence into words,
which are blocks of length T . The plots display the root mean squared error (RMSE) of the
estimates of H/T . The RMSE was estimated by averaging 1000 independent realizations. MLE
is the “naive” empirical plug-in estimate. CAE is the coverage adjusted estimator. BUB+ is the
BUB estimator [16] with its m parameter set to the maximum possible number of words (V1: 6T

= 46,656, Field L: 2T = 32,768). BUB- is the BUB estimator with m set, naively, to the observed
number of words. The actual values of H/T are V1: 1.66 and Field L: 0.151. The BUB+ estimator
has a very large RMSE resulting from specifying m as the maximum number of words. The CAE
estimator performs relatively well, especially for sample sizes as small as several hundred words.

2 Background

In linguistic applications, X could be the set of words in a language, with P specifying their

frequency of occurrence. For neuronal data, Xi often represents the number of spikes (action

potentials) occurring during the ith time bin. Alternatively, when a fine resolution of time is used

(such as ∆t = 1 millisecond), the occurrence of spikes is indicated by a binary sequence, and Xi

becomes the pattern, or “word,” made up of 0-1 words or “letters,” for the ith word. This is

described in Figure 2, and it is the basis for the widely-used “direct method” proposed by Strong

et al. [21]. The number of possible words m := |{x ∈ X : P (x) > 0}| is usually unknown and

possibly infinite. In the example in Figure 2, the maximum number of words is the total number

2
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Figure 2: The top row depicts 45 milliseconds of a hypothetical spike train. The ticks on the time
axis demarcate ∆t = 1 millisecond bins (intervals). The spike train is discretized into a sequence
of counts. Each count is the number of spikes that fall within a single time bin. Subdividing
this sequence into words of length T = 10 leads to the words shown at the bottom. The words
X1, X2, . . . take values in the space X = {0, 1}10 consisting of all 0-1 strings of length 10.

of 0-1 strings of length T . For T = 10 this number is 1024; for T = 20 it is well over one million,

and in general there is an exponential explosion with increasing T . Furthermore, the phenomenon

under investigation will often involve fine time resolution, necessitating a small bin size ∆t and

thus a large T . For large T , the estimation of P (x) is likely to be challenging.

We note that Strong et al. [21] calculated the entropy rate. Let {Wt : t = 1, 2, . . .} be a

discretized (according to ∆t) spike train as in the example in Figure 2. If {Wt} is a stationary

process, the entropy of a word, say X1 = (W1, . . . ,WT ), divided by its length T is non-increasing

in T and has a limit as T →∞, i.e.

lim
T→∞

1
T
H(X1) = lim

T→∞

1
T
H(W1, . . . ,WT ) =: H ′ (2)

exists [6]. This is the entropy rate of {Wt}. The word entropy is used to estimate the entropy

rate. If {Wt} has finite range dependence, then the above entropy factors into a sum of conditional

entropies and a single marginal entropy. Generally, the word length is chosen to be large enough so

that H(W1, . . . ,WT )/T is a close approximation to H ′, but not so large that there are not enough

words to estimate H(W1, . . . ,WT ). Strong et al. [21] proposed that the entropy rate estimate be

extrapolated from estimates of the word entropy over a range of word lengths. We do not address
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this extrapolation, but rather focus on the problem of estimating the entropy of a word.

In the most basic case the observations X1, . . . , Xn are assumed to be independent and identi-

cally distributed (i.i.d.). Without loss of generality, we assume that X ⊆ N and that the words 2

are labeled 1, 2, . . .. The seemingly most natural estimate is the empirical plug-in estimator

Ĥ := −
∑

x

P̂ (x) log P̂ (x), (3)

which replaces the unknown probabilities in (1) with the empirical probabilities P̂ (x) := nx/n,

that is the observed proportion nx/n of occurrences of the word x in X1, . . . , Xn. The empirical

plug-in estimator is often called the “naive” estimate or the “MLE”–after the fact that P̂ is the

maximum likelihood estimate of P . We will use “MLE” and “empirical plug-in” interchangeably.

From Jensen’s Inequality it is readily seen that the MLE is negatively biased unless P is trivial. In

fact no unbiased estimate of entropy exists, see [16] for an easy proof.

In the finite m case, Basharin [3] showed that the MLE is biased, consistent, and asymptotically

normal with variance equal to the entropy variance Var[logP (X1)]. Miller [13] previously studied

the bias independently and provided the formula

EĤ −H = −m− 1
2n

+O(1/n2). (4)

The bias dominates the mean squared error of the estimator [1], and has been the focus of recent

studies [23, 16].

The original “direct method” advocated an ad-hoc strategy of bias reduction based on a sub-

sampling extrapolation [21]. A more principled correction based on the jackknife technique was

proposed earlier by Zahl [27]. The formula (4) suggests a bias correction of adding (m − 1)/(2n)

to the MLE. This is known as the Miller-Maddow correction. Unfortunately, it is an asymptotic

correction that depends on the unknown parameter m. Paninski [16] observed that both the MLE

and Miller-Maddow estimates fall into a class of estimators that are linear in the frequencies of ob-
2The information theory literature traditionally refers to X as an alphabet and its elements as symbols. It is

natural to call a tuple of symbols a word, but the problem of estimating the entropy of the T -tuple word reduces to
that of estimating the entropy in an enlarged space (of T -tuples).
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served word counts fj = |{nx : nx = j}|. He proposed an estimate, “Best Upper Bounds” (BUB),

based on numerically minimizing an upper-bound on the bias and variance of such estimates when

m is assumed finite and known. We note that in the case that m is unknown, it can be replaced

by an upper-bound, but the performance of the estimator is degraded.

Bayesian estimators have also been proposed for the finite m case by Wolpert and Wolf [25].

Their approach is to compute the posterior distribution of entropy based on a symmetric Dirichlet

prior on P . Nemenman et al. [14] found that the Dirichlet prior on P induces a highly concentrated

prior on entropy. They argued that this property is undesirable and proposed an estimator based

on a Dirichlet mixture prior with the goal of flattening the induced prior distribution on entropy.

Their estimate requires a numerical integration and also the unknown parameter m, or at least

an upper-bound. The estimation of m is even more difficult than the estimation of entropy [1],

because it corresponds to estimating lima↓0
∑

x[P (x)]a.

In the infinite m case, Antos and Kontoyiannis [1] proved consistency of the empirical plug-in

estimator and showed that there is no universal rate of convergence for any estimator. However,

Wyner and Foster [26] have shown that the best rate (to first order) for the class of distributions

with with finite entropy variance or equivalently finite log-likelihood second moment

∑
x

P (x)(logP (x))2 <∞ (5)

is OP (1/ log n). This rate is achieved by the empirical plug-in estimate as well as an estimator

based on match lengths. Despite the fact that the empirical plug-in estimator is asymptotically

optimal, its finite sample performance leaves much to be desired.

Chao and Shen [5] proposed a coverage adjusted entropy estimator intended for the case when

there are potentially unseen words in the sample. This is always the case when m is relatively large

or infinite. Intuitively, low probability words are typically absent from most sequences, i.e. the

expected sample coverage is < 1, but in total, the missing words can have a large contribution to

H. The estimator is based on plug-in of a coverage adjusted version of the empirical probability

into the Horvitz-Thompson [8] estimator of a population total. They presented simulation results

showing that the estimator seemed to perform quite well, especially in the small sample size regime,
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when compared to the usual empirical plug-in and several bias corrected variants. The estimator

does not require knowledge of m, but they assumed a finite m. We prove here (Theorem 1) that

the coverage adjusted estimator also works in the infinite m case. Chao and Shen also provided

approximate confidence intervals for the coverage adjusted estimate, however they are asymptotic

and depend on the assumption of finite m.

The problems of entropy estimation and estimation of the distribution P are distinct. Entropy

estimation should be no harder than estimation of P , since H is a functional of P . However, several

of the entropy estimators considered here depend either implicitly or explicitly on estimating P .

BUB is linear in the frequency of observed word counts fj , and those are 1-to-1 with the empirical

distribution P̂ up to labeling. In general, any symmetric estimator is a function of P̂ . The only

estimators mentioned above that does not depend on P̂ is the match length estimator. For the

coverage adjusted estimator, the dependence on estimating P is only through estimating P (k) for

observed words k.

3 Theory

Unobserved words—those that do not appear in the sample, but have non-zero probability–can

have a great impact on entropy estimation. However, these effects can be mitigated with two types

of corrections: Horvitz-Thompson adjustment and coverage adjustment of the probability estimate.

Section 3.1 contains an exposition of some of these effects. The adjustments are described in Section

3.2 along with the definition of the resulting coverage adjusted entropy estimator. A key ingredient

of the estimator is a coverage adjusted probability estimate. We provide a novel derivation from

the viewpoint of regularization in Section 3.3. Lastly, Section 3.4 concludes the theoretical study

with our rate of convergence results.

Throughout this section we assume that X1, . . . , Xn is an i.i.d. sequence from the distribution

P on the countable set X . Without loss of generality, we assume that the P (k) > 0 for all k ∈ X

6



and write pk for P (k) = P(Xi = k). As before, m := |X | and possibly m = ∞. Let

nk :=
n∑

i=1

1{Xi = k} (6)

be the number of times that the word k appears in the sequence X1, . . . , Xn, with 1{·} denoting

the indicator of the event {·}.

3.1 The Unobserved Word Problem

The set of observed words S is the set of words that appear at least once in the sequence X1, . . . , Xn,

i.e.

S := {k : nk > 0}. (7)

The complement of S, i.e. X\S, is the set of unobserved words. There is always a non-zero

probability of unobserved words, and if m > n or m = ∞ then there are always unobserved words.

In this section we describe two effects of the unobserved words pertaining to entropy estimation.

Given the set of observed words S, the entropy of P can be written as the sum of two parts:

H = −
∑
k∈S

pk log pk −
∑
k/∈S

pk log pk. (8)

One part is the contribution of observed words; the other is the contribution of unobserved words.

Suppose for a moment that pk is known exactly for k ∈ S, but unknown for k /∈ S. Then we could

try to estimate the entropy by

−
∑
k∈S

pk log pk, (9)

but there would be an error in the estimate unless the sample coverage

C :=
∑
k∈S

pk (10)

is identically 1. The error is due to the contribution of unobserved words and thus the unobserved

7



summands:

−
∑
k/∈S

pk log pk. (11)

This error could be far from negligible, and its size depends on the pk for k /∈ S. However, there is

an adjustment that can be made so that the adjusted version of (9) is an unbiased estimate of H.

This adjustment comes from the Horvitz-Thompson [8] estimate of a population total, and we will

review it in Section 3.2.

Unfortunately, pk is unknown for both k ∈ S and k /∈ S. A common estimate for pk is the

MLE/empirical p̂k := nk/n. Plugging this estimate into (9) gives the MLE/empirical plug-in

estimate of entropy:

Ĥ := −
∑

k

p̂k log p̂k = −
∑
k∈S

p̂k log p̂k, (12)

because p̂k = 0 for all k /∈ S. If the sample coverage C is < 1, then this is a degenerate estimate

because
∑

k∈S p̂k = 1 and so p̂k = 0 for all k /∈ S. Thus, we could shrink the estimate of pk on

S toward zero so that its sum over S is < 1. This is the main idea behind the coverage adjusted

probability estimate, however we will derive it from the viewpoint of regularization in Section 3.3.

We have just seen that unobserved words can have two negative effects on entropy estimation:

unobserved summands and error-contaminated summands. The “size,” or non-coverage, of the set

of unobserved words can be measured by 1 minus the sample coverage:

1− C =
∑
k/∈S

pk = P(Xn+1 /∈ S|S). (13)

Thus, it is also the conditional probability that a future observation Xn+1 is not a previously

observed word. So the average non-coverage is

E(1− C) = P(Xn+1 /∈ S) =
∑

k

pk(1− pk)n. (14)

and in general E(1 − C) > 0. Its rate of convergence to 0, as n → ∞, depends on P and can be

very slow. (See the corollary to Theorem 2 below). It is necessary to understand how to mitigate

the effects of unobserved words on entropy estimation.

8



3.2 Coverage Adjusted Entropy Estimator

Chao and Shen [5] observed that entropy can be thought of as the total
∑

k yk of an unknown pop-

ulation consisting of elements yk = −pk log pk. For the general problem of estimating a population

total, the Horvitz-Thompson estimator [8],

∑
k∈S

yk

P(k ∈ S)
=

∑
k

yk

P(k ∈ S)
1{k ∈ S}, (15)

provides an unbiased estimate of
∑

k yk, under the assumption that the inclusion probabilities

P(k ∈ S) and yk are known for k ∈ S. For the i.i.d. sequence X1, . . . , Xn the probability that word

k is unobserved in the sample is (1− pk)n. So the inclusion probability is 1− (1− pk)n. Then the

Horvitz-Thompson adjusted version of (9) is

∑
k∈S

−pk log pk

1− (1− pk)n
. (16)

All that remains is to estimate pk for k ∈ S. The empirical p̂k can be plugged into the above

formula, however, as we stated in the previous section, it is a degenerate estimate when C < 1

because it assigns 0 probability to k /∈ S and, thus, tends to overestimates the inclusion probability.

We will discuss this further in Section 3.3.

In a related problem, Ashbridge and Goudie [2] considered finite populations with elements

yk = 1, so that (15) becomes an estimate of the population size. They found that P̂ did not work

well and suggested using instead a coverage adjusted estimate P̃ := ĈP̂ , where Ĉ is an estimate of

C. Chao and Shen recognized this and proposed using the Good-Turing [7, 19] coverage estimator:

Ĉ := 1− f1

n
, (17)

where f1 :=
∑

k 1{nk = 1} is the number of singletons in the sequence X1, . . . , Xn. This leads to

the coverage adjusted entropy estimator:

H̃ := −
∑

k

p̃k log p̃k

1− (1− p̃k)n
, (18)

9



where p̃k := Ĉp̂k. Chao and Shen gave an argument for CP̂ based on a conditioning property of

the multinomial distribution. In the next section we give a different derivation from the perspective

of regularization of an empirical risk, and give upper-bounds for the bias and variance of Ĉ.

3.3 Regularized Probability Estimation

Consider the problem of estimating P under the entropy loss L(q, x) = − logQ(x), for Q satisfying

Q(k) = qk ≥ 0 and
∑
qk = 1. This loss function is closely aligned with the problem of entropy

estimation because the risk, i.e. the expected loss on a future observation,

R(Q) := −E logQ(Xn+1) (19)

is uniquely minimized by Q = P and its optimal value is the entropy of P . The MLE P̂ minimizes

the empirical version of the risk

R̂(Q) := − 1
n

n∑
i=1

logQ(Xi). (20)

As stated previously in Section 3.1, this is a degenerate estimate when there are unobserved words.

More precisely, if the expected coverage EC < 1 (which is true in general), then R(P̂ ) = ∞.

Analogously to (8), the expectation in (19) can be split into two parts by conditioning on

whether Xn+1 is a previously observed word or not:

R(Q) =− E[logQ(Xn+1)|Xn+1 ∈ S] P(Xn+1 ∈ S)

− E[logQ(Xn+1)|Xn+1 /∈ S] P(Xn+1 /∈ S).
(21)

Since P(Xn+1 ∈ S) does not depend on Q, minimizing (21) with respect to Q is equivalent to

minimizing

−E[logQ(Xn+1)|Xn+1 ∈ S]− λ∗E[logQ(Xn+1)|Xn+1 /∈ S], (22)

where λ∗ = P(Xn+1 /∈ S)/P(Xn+1 ∈ S). We cannot distinguish the probabilities of the unobserved

words on the basis of the sample. So consider estimates Q which place constant probability on

10



x /∈ S. Equivalently, these estimates treat the unobserved words as a single class and so the risk

reduces to the equivalent form:

−E[logQ(Xn+1)|Xn+1 ∈ S]− λ∗E log

[
1−

∑
k∈S

Q(k)

]
. (23)

The above expectations only involve evaluating Q at observed words. Thus, (20) is more natural as

an estimate of −E[logQ(Xn+1)|Xn+1 ∈ S], than as an estimate of R(Q). If we let λ be any estimate

of the odds ratio λ∗ = P(Xn+1 /∈ S)/P(Xn+1 ∈ S), then we arrive at the regularized empirical risk,

R̃(q;λ) := − 1
n

∑
i

logQ(Xi)− λ log

[
1−

∑
i

Q(Xi)

]
. (24)

This is the usual empirical risk with an additional penalty on the total mass assigned to observed

words. It can be verified that the minimizer, up to an equivalence, is (1 + λ)−1P̂ . This estimate

shrinks the MLE towards 0 by the amount (1+λ)−1. Any Q which agrees with (1+λ)−1P̂ on S is a

minimizer of (24). Note that (1+λ∗)−1 = P(Xn+1 ∈ S) = EC is the expected coverage, rather than

the sample coverage C. Ĉ can be used to estimate both EC and C, however it is actually better as

an estimate of EC because McAllester and Schapire [12] have shown that Ĉ = C +OP (log n/
√
n),

whereas we prove in the appendix the following proposition.

Proposition 1. 0 ≥ E(Ĉ−C) = −
∑

k p
2
k(1−pk)n−1 ≥ (1−1/n)n−1/n ∼ −e−1/n and Var Ĉ ≤ 4/n.

So Ĉ is a 1/
√
n consistent estimate of EC. Using Ĉ to estimate EC = (1 + λ∗)−1, we obtain

the coverage adjusted probability estimate P̃ = ĈP̂ .

3.4 Convergence Rates

In the infinite m case, Antos and Kontoyiannis [1] proved that the MLE is universally consistent

almost surely and in L2, provided that the entropy exists. However, they also showed that there

can be no universal rate of convergence for entropy estimation. Some additional restriction must

be made beyond the existence of entropy in order to obtain a rate of convergence. Wyner and

Foster [26] found that for the weakest natural restriction,
∑

k pk(log pk)2 < ∞, the best rate of
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convergence, to first order, is OP (1/ log n). They proved that the MLE and an estimator based

on match lengths achieves this rate. Our main theoretical result is that the coverage adjusted

estimator also achieves this rate.

Theorem 1. Suppose that
∑

k pk(log pk)2 <∞. Then as n→∞,

H̃ = H +OP (1/ log n). (25)

In the previous section we employed Ĉ = 1 − f1/n, in the regularized empirical risk (24). As

for the observed sample coverage, C = P(Xn+1 ∈ S|S), McAllester and Schapire [12] proved that

Ĉ = P(Xn+1 ∈ S|S)+OP (log n/
√
n), regardless of the underlying distribution. Our theorem below

together with McAllester and Schapire’s implies a rate of convergence on the total probability of

unobserved words.

Theorem 2. Suppose that
∑

k pk| log pk|q <∞. Then as n→∞, almost surely,

Ĉ = 1−O(1/(log n)q). (26)

Corollary 1. Suppose that
∑

k pk| log pk|q <∞. Then as n→∞,

1− C = P(Xn+1 /∈ S|S) = OP (1/(log n)q). (27)

Proof. This follows from the above theorem and Theorem 3 of [12] which implies |Ĉ − P(Xn+1 ∈

S|S)| ≤ oP (1/(log n)q) because

0 ≤ P(Xn+1 /∈ S|S) ≤ |1− Ĉ|+ |Ĉ − P(Xn+1 ∈ S|S)| (28)

and OP (1/(log n)q) + oP (1/(log n)q) = OP (1/(log n)q).

We defer the proofs of Theorems 1 and 2 to Appendix A. At the time of writing, the only other

entropy estimators proved to be consistent and asymptotically first-order optimal in the finite

entropy variance case that we are aware of are the MLE and Wyner and Foster’s modified match

12



length estimator. However, the OP (1/ log n) rate, despite being optimal, is somewhat discouraging.

It says that in the worst case we will need an exponential number of samples to estimate the entropy.

Furthermore, the asymptotics are unable to distinguish the coverage adjusted estimator from the

MLE, which has been observed to be severely biased. In the next section we use simulations to

study the small-sample performance of the coverage adjusted estimator and the MLE, along with

other estimators. The results suggest that in this regime their performances are quite different.

4 Simulation Study

We conducted a large number of simulations under varying conditions to investigate the performance

of the coverage adjusted estimator (CAE) and compare with four other estimators:

• Empirical Plug-in (MLE): defined in (3).

• Miller-Maddow corrected MLE (MM): based on the asymptotic bias formula provided by

Miller [13] and Basharin [3]. It is derived from equation (4) by estimating m by the number

of distinct words observed m̂ =
∑

k 1{nk ≥ 1} and adding (m̂− 1)/(2n) to the MLE.

• Jackknife (JK): proposed by Zahl [27]. It is a bias-corrected version of the MLE obtained by

averaging all n leave-one-out estimates.

• Best Upper Bounds (BUB): proposed by Paninski [16]. It is obtained by numerically mini-

mizing a worst case error bound for a certain class of linear estimators for a distribution with

known support size m.

The NSB estimator proposed by [14] was not included in our simulation comparison because of

problems with the software and its computational cost. We also tried their asymptotic formula for

their estimator in the “infinite (or unknown)” m case:

ψ(1)/ ln(2)− 1 + 2 log n− ψ(n− m̂), (29)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. However, we were also unable to get it to work

because it seemed to increase unboundedly with the sample size, even for m = ∞ cases.
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There are two sets of experiments consisting of multiple trials. The first set of experiments

concern some simple, but popular model distributions. The second set of experiments deal with

neuronal data recorded from primate visual and avian auditory systems. It departs from the

theoretical assumptions of Section 3 in that the observations are dependent.

Chao and Shen [5] also conducted a simulation study of the coverage adjusted estimator for

distributions with small m and showed that it performs reasonably well even when there is a

relatively large fraction of unobserved words. Their article also contains examples from real data

sets concerning diversity of species. The experiments presented here are intended to complement

their results and expand the scope.

Practical Considerations

We encountered a few practical hurdles when performing these experiments. The first is that the

coverage adjusted estimator is undefined when the sample consists entirely of singletons. In this

case Ĉ = 0 and p̃ = 0. The probability of this event decays exponentially fast with the sample

size, so it is only an issue for relatively small samples. To deal with this matter we replaced the

denominator n in the definition of Ĉ with n + 1. This minor modification does not affect the

asymptotic behavior of the estimator, and allows it to be defined for all cases.3

The BUB estimator assumes that the number of words m is finite and requires that it be

specified. m is usually unknown, but sometimes an upper-bound on m may be assumed. To

understand the effect of this choice we tried three different variants on the BUB estimator’s m

parameter:

• Understimate (BUB-): The naive m̂ as defined above for the Miller-Maddow corrected MLE.

• Oracle value (BUB.o): The true m in the finite case and d2He in the infinite case.

• Overestimate (BUB+): Twice the oracle value for the first set of experiments and the maxi-

mum number of words |X | for the second set of neuronal data experiments.
3Another variation is to add .5 to the numerator and 1 to the denominator.
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support (k =) pk H Var[log p(X)]
Uniform 1, . . . , 1024 1/1024 10 0

Zipf 1, . . . , 1024 k−1/
∑

k k
−1 7.51 9.59

Poisson 1, . . . ,∞ 1024k/(k!e1024) 7.05 1.04
Geometric 1, . . . ,∞ (1023/1024)k−1/1024 11.4 2.08

Table 1: Standard models considered in the first set of experiments.

Although the BUB estimator is undefined for the m infinite case, we still tried using it, defining the

m parameter of the oracle estimator to be d2He. This is motivated by the Asymptotic Equipartition

Property (AEP) [6], which roughly says that, asymptotically, 2H is the effective support size of the

distribution. There are no theoretical guarantees for this heuristic use of the BUB estimator, but

it did seem to work in the simulation cases below. Again, this is an oracle value and not actually

known in practice. The implementation of the estimator was adapted from software provided by

the author of [16] and its numerical tuning parameters were left as default.

Experimental Setup

In each trial we sample from a single distribution and compute each estimator’s estimate of the

entropy. Trials are repeated, with 1,000 independent realizations.

Standard Models We consider the four discrete distributions shown in Table 1. The uniform

and truncated Zipf distributions have finite support (m = 1, 024), while the Poisson and geometric

have infinite support. The Zipf distribution is very popular and often used to model linguistic data.

It is sometimes referred to as a “power law.” We generated i.i.d. samples of varying sample size (n)

from each distribution and computed the respective estimates. We also considered the distribution

of distinct words in James Joyce’s novel Ulysses. We found that results were very similar to that

of the Zipf distribution and did not include them in this article.

Neuronal Data Here we consider two real neuronal data sets first presented in [22]. A subset of

the data are available from the Neural Prediction Challenge4. We fit a variable length Markov chain

(VLMC) to subsets of each data set and treated the fitted models as the truth. Our goal was not
4http://neuralprediction.berkeley.edu
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depth (msec) X word length T |X | H H/T
Field L VLMC 232 (232) {0, 1}10 10 1,024 1.51 0.151

232 (232) {0, 1}15 15 32,768 2.26 0.150
V1 VLMC 3 (48) {0, 1, . . . , 5}5 5 7,776 8.32 1.66

3 (48) {0, 1, . . . , 5}6 6 46,656 9.95 1.66

Table 2: Fitted VLMC models. Entropy (H) was computed by Monte Carlo with 106 samples from
the stationary distribution. H/T is the entropy of the word divided by its length.

to model the neuronal data exactly, but to construct an example which reflects real neuronal data,

including any inherent dependence. This experiment departs from the assumption of independence

for the theoretical results. See [10] for a general overview of the VLMC methodology.

From the first data set, we extracted 10 repeated trials, recorded from a single neuron in the Field

L area of avian auditory system during natural song stimulation. The recordings were discretized

into ∆t = 1 millisecond bins and consist of sequences of 0’s and 1’s indicating the absence or

presence of a spike. We concatenated the ten recordings before fitting the VLMC (with state space

{0, 1}). A complete description of the physiology and other information theoretic calculations from

the data can be found in [9].

The other data set contained several separate single neuron recording sequences from the V1

area of primate visual system, during a dynamic natural image stimulation. We used the longest

contiguous sequence from one particular trial. This consisted of 3,449 spike counts, ranging from 0

to 5. The counts are number of spikes occurring during consecutive ∆t = 16 millisecond periods.

(For the V1 data, the state space of the VLMC is {0, 1, 2, 3, 4, 5}). The resulting fits for both data

sets are shown in Table 2. Note that for each VLMC, H/T is nearly the same for both choices of

word length (cf. the remarks under equation (2) in Section 2).

The (maximum) depth of the VLMC is a measure of time dependence in the data. For the Field

L data, the dependence is long, with the VLMC looking 232 time periods (232 msec) into the past.

This may reflect the nature of the stimulus in the Field L case. For the V1 data, the dependence

is short with the fitted VLMC looking only 3 time periods (48 msec) into the past.

Samples of length n were generated from the stationary distribution of the fitted VLMCs. We

subdivided each sample into non-overlapping words of length T . Figure 2 shows this for the Field

16



L model with T = 10. We tried two different word lengths for each model. The word lengths and

entropies are shown in Table 2. We then computed each estimator’s estimate of entropy on the

words and divided by the word length to get an estimate of the entropy rate of the word.

We treat m as unknown in this example and did not include the oracle BUB.o in the experiment.

We used the maximum possible value of m, i.e. |X | for BUB+. In the case of Field L with T = 10,

this is 1,024. The other values are shown in Table 2.

Results

Standard Models The results are plotted in Figures 3, 4. It is surprising that good estimates

can be obtained with just a few observations. Estimating m from its empirical value marginally

improves MM over the MLE. The naive BUB-, which also uses the empirical value of m, performs

about the same as JK.

Bias apparently dominates the error of most estimators. The CAE estimator trades away bias

for a moderate amount of variance. The RMSE results for the four distributions are very similar.

The CAE estimator performs consistently well, even for smaller sample sizes, and is competitive

with the oracle BUB.o estimator. The Zipf distribution example seems to be the toughest case for

the CAE estimator, but it still performs relatively well for sample sizes of at least 1,000.

Neuronal Data The results are presented in Figures 5 and 6. The effect of the dependence in

the sample sequences is not clear, but all the estimators seem to be converging to the truth. CAE

consistently performs well for both V1 and Field L, and really shines in the V1 example. However,

for Field L there is not much difference between the estimators, except for BUB+.

BUB+ uses m equal to the maximum number of words |X | and performs terribly because the

data are so sparse. The maximum entropy corresponding to |X | is much larger than the actual

entropy. In the Field L case, the maximum entropies are 10 and 15, while the actual entropies are

1.51 and 2.26. In the V1 case, the maximum entropies are 12.9 and 15.5, while the actual entropies

are 8.32 and 9.95. This may be the reason that the BUB+ estimator has such a large positive

bias in both cases, because the estimator is designed to approximately minimize a balance between

upper-bounds on worst case bias and variance.
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Figure 3: The two distributions considered here have finite support, with m = 1, 024. (Left) The
estimated entropy for several different estimators, over a range of sample sizes n. The lines are
average estimates taken over 1,000 independent realizations, and the vertical bars indicate ± one
standard deviation of the estimate. The actual value of H is indicated by a solid gray horizontal
line. MM and JK are the Miller-Maddow and Jackknife corrected MLEs. BUB-, BUB.o, and BUB+
are the BUB estimator with its m parameter set to a naive m̂, oracle m = 1024, and twice the
oracle m. CAE is the coverage adjusted estimator. (Right) The corresponding root mean squared
error (RMSE). Bias dominates most estimates. For the uniform distribution, CAE and BUB.o have
relatively small biases and perform very well for sample sizes as small as several hundred. For the
Zipf case, the CAE estimator performs nearly as well as the oracle BUB.o for sample sizes larger
than 500.
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Figure 4: The two distributions considered here have infinite support, with m = ∞. (Left) The
estimated entropy for several different estimators, over a range of sample sizes n. The lines are
average estimates taken over 1,000 independent realizations, and the vertical bars indicate ± one
standard deviation of the estimate. The actual value of H is indicated by a solid gray horizontal
line. MM and JK are the Miller-Maddow and Jackknife corrected MLEs. BUB-, BUB.o, and
BUB+ are the BUB estimator with its m parameter set to a naive m̂, oracle m = d2He, and twice
the oracle m. CAE is the coverage adjusted estimator. (Right) The corresponding root mean
squared error (RMSE). Results are very similar to those in the previous figure, the CAE estimator
performs nearly as well as the oracle BUB.o.
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Figure 5: (Left) The estimated entropy rate for several different estimators. Samples of size n are
drawn from a stationary VLMC used to model neuronal data from Field L of avian auditory system.
A single sample corresponds to 1 millisecond of recording time. We followed the “direct method”
and divided each sample sequence into words of length T . In the top row the word length is T = 10
and the maximum number of words |X | is 1,024. In the bottom row T = 15 and |X | = 32, 768. The
lines are average estimates taken over 1,000 independent realizations, and the vertical bars indicate
± one standard deviation of the estimate. The actual value of H/T is indicated by a solid gray
horizontal line. MM and JK are the Miller-Maddow and Jackknife corrected MLEs. BUB- and
BUB+ are the BUB estimator with its m parameter set to a naive m̂ and the maximum possible
number of words |X |: 1,024 for the top row and 32,768 for the bottom. CAE is the coverage adjusted
estimator. (Right) The corresponding root mean squared error (RMSE). The BUB+ estimator
has a considerably large bias in both cases. The CAE estimator has a moderate balance of bias
and variance and shows a visible improvement over all other estimators in the larger (T = 15) word
case.
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Figure 6: (Left) The estimated entropy rate for several different estimators. The samples of size n
are drawn from a stationary VLMC used to model neuronal data from V1 of primate visual system.
A single sample corresponds to 16 milliseconds of recording time. We followed the “direct method”
and divided each sample sequence into words of length T . In the top row the word length is T = 5
and the maximum number of words |X | is 7,776. In the bottom row T = 6 and |X | = 46, 656. The
lines are average estimates taken over 1,000 independent realizations, and the vertical bars indicate
± one standard deviation of the estimate. The actual value of H/T is indicated by a solid gray
horizontal line. MM and JK are the Miller-Maddow and Jackknife corrected MLEs. BUB- and
BUB+ are the BUB estimator with its m parameter set to a naive m̂ and the maximum possible
number of words: 7,776 for the top row and 46,656 for the bottom. CAE is the coverage adjusted
estimator. (Right) The corresponding root mean squared error (RMSE). The CAE estimator has
the smallest bias and performs much better than the other estimators across all sample sizes.
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Summary

The coverage adjusted estimator is a good choice for situations where m is unknown and/or infinite.

In these situations, the use of an estimator which requires specification of m is disadvantageous

because a poor estimate (or upper-bound) of m, or the “effective” m in the infinite case, leads

to further error in the estimate. BUB.o, which used the oracle m, performed well in most cases.

However, it is typically not available in practice, because m is usually unknown.

The Miller-Maddow corrected MLE, which used the empirical value of m, improved on the

MLE only marginally. BUB-, which is BUB with the empirical value of m, performed better than

the MLE. It appeared to work in some cases, but not others. For BUB+, where we overestimated

or upper-bounded m (by doubling the oracle m, or using the maximal |X |), the bias and RMSE

increased significantly over BUB.o for small sample sizes. It appeared to work in some cases, but not

others–always alternating with BUB-. In the case of the neuronal data models, BUB+ performed

very poorly. In situations like this, even though an upper-bound on m is known, it can be much

larger than the “effective” m, and result in a gross error.

5 Conclusions

Our study has emphasized the value of viewing entropy estimation as a problem of sampling from

a population, here a population of words made up of spike train sequence patterns. The coverage

adjusted estimator performed very well in our simulation study, and it is very easy to compute.

When the word length m is known, the BUB estimator can perform better. In practice, however,

m is usually unknown and, as seen in V1 and Field L examples, assuming an upper bound on it

can result in a large error. The coverage-adjusted estimator therefore appears to us to be a safer

choice.

Other estimates of the probabilities of observed words, such as the profile-based estimator

proposed by Orlitsky et al. [15], might be used in place of P̃ in the coverage adjusted entropy

estimator but that is beyond the scope of this article.

The V1 and Field L examples have substantial dependence structure, yet methods derived
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under the i.i.d. assumption continue to perform well. It may be shown that both the direct method

and the coverage-adjusted estimator remain consistent under the relatively weak assumption of

stationarity and ergodicity, but the rate of convergence will depend on mixing conditions. On

the other hand, in the non-stationary case these methods become inconsistent. Stationarity is,

therefore, a very important assumption. We intend to discuss these issue at greater length in a

separate paper.

As is clear from our simulation study, the dominant source of error in estimating entropy is

often bias, rather than variance, which is typically not captured from computed standard errors.

An important problem for future investigation would therefore involve data-driven estimation of

bias in the case of unknown or infinite m.
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A Proofs

We first prove Theorem 2. The proof builds on the following application of a standard concentration

technique.

Lemma 1. Ĉ → 1 almost surely.

Proof. Consider the number of singletons f1 as a function of xn
1 = (x1, . . . , xn). Modifying a single

coordinate of xn
1 changes the number of singletons by at most 2 because the number of words

affected by such a change is at most 2. Hence Ĉ = 1 − f1/n changes by at most 2/n. Using

McDiarmid’s method of bounded differences, i.e. the Hoeffding-Azuma Inequality, gives

P(|Ĉ − EĈ| > ε) ≤ 2e−
1
2
nε2 (30)

and by consequence of the Borel-Cantelli Lemma, |C − EĈ| → 0 almost surely. To show that

EĈ → 1, we note that 1 ≥ (1− pk)n−1 → 0 for all pk > 0 and

|1− EĈ| = E
1
n

∑
k

1{nk = 1} (31)

=
∑

k

pk(1− pk)n−1 → 0 (32)

as n→∞ by the Bounded Convergence Theorem.

Proof of Proposition 1. The bias is

EĈ − P(Xn+1 ∈ S) = P(Xn+1 /∈ S)− E(1− Ĉ) (33)

=
∑

k

pk(1− pk)n −
∑

k

pk(1− pk)n−1 (34)

= −
∑

k

p2
k(1− pk)n−1. (35)

This quantity is trivially non-positive, and a little bit of calculus shows that the bias is maximized
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by the uniform distribution pk = 1/n:

∑
k

p2
k(1− pk)n−1 ≤

∑
k

pk max
0≤x≤1

x(1− x)n−1 (36)

= max
0≤x≤1

x(1− x)n−1 (37)

= (1− 1/n)n−1/n (38)

The variance bound can be deduced from equation (30), because Var Ĉ =
∫∞
0 P(|Ĉ − EĈ|2 > x)dx

and (30) implies ∫ ∞

0
P(|Ĉ − EĈ|2 > x)dx ≤

∫ ∞

0
2e−

1
2
nxdx = 4/n. (39)

Proof of Theorem 2. From (30) we conclude that Ĉ = EĈ +OP (n−1/2). So it suffices to show that

EĈ = 1 +O(1/(log n)q). Let εn = 1/
√
n. We split the summation in (32):

|1− EĈ| =
∑

k:pk≤εn

pk(1− pk)n−1 +
∑

k:pk>εn

pk(1− pk)n−1 (40)

Using Lemma 2 below, the first term on the right side is

∑
k:pk≤εn

pk(1− pk)n−1 ≤
∑

k:pk≤εn

pk = O(1/(log n)q) (41)

The second term is

∑
k:pk>εn

pk(1− pk)n−1 ≤ (1− εn)n−1
∑

k:pk>εn

pk (42)

≤ (1− εn)n−1 (43)

≤ exp(−(n− 1)/
√
n) (44)

by the well-known inequality 1 + x ≤ ex.

25



Lemma 2 (Wyner and Foster [26]).

∑
k:pk≤ε

pk ≤
∑

k pk| log pk|q

log(1/ε)q

Proof. Since log(1/x) is a decreasing function,

∑
k:pk≤ε

pk

∣∣∣∣log
1
pk

∣∣∣∣q ≥ ∑
k:pk≤ε

pk

∣∣∣∣log
1
ε

∣∣∣∣q (45)

and then we collect the log(1/ε)q term to the left side to derive the claim.

Proof of Theorem 1. Using the result of Wyner and Foster that under the above assumptions,

Ĥ = H +OP (1/ log n), it suffices to show |H̃ − Ĥ| = OP (1/ log n). All summations below will only

be over k such that p̂k > 0 or pk > 0. It is easily verified that

H̃ − Ĥ = −
∑

k

p̃k log p̃k

1− (1− p̃k)n
− p̂k log p̂k (46)

= −
∑

k

[
Ĉ

1− (1− p̃k)n
− 1

]
p̂k log p̂k︸ ︷︷ ︸

Dn

(47)

−
∑

k

Ĉp̂k log Ĉ
1− (1− p̃k)n︸ ︷︷ ︸

Rn

(48)

To bound Rn we will use the OP (1/(log n)2) rate of Ĉ from Theorem 2. Note that Ĉ/n ≤ Ĉp̂k =

p̃k ≤ 1 and by the decreasing nature of 1/[1− (1− p̃k)n]

|Rn| ≤
| log Ĉ|

1− (1− Ĉ/n)n

∑
k

p̂k =
| log Ĉ|

1− (1− Ĉ/n)n
(49)

By Lemma 1, Ĉ → 1 almost surely and since xn → 1 implies (1− xn/n)n → e−1, the right side is

∼ | log Ĉ|/(1− e−1) = OP (1/(log n)2). As for Dn,

|Dn| ≤ −
∑

k

|Ĉ − 1|+ (1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k (50)
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and since p̃k ≥ Ĉ/n whenever p̃k > 0,

−
∑

k

|Ĉ − 1|
1− (1− p̃k)n

p̂k log p̂k ≤
|Ĉ − 1|

1− (1− Ĉ/n)n
Ĥ (51)

∼ |Ĉ − 1|
1− e−1

Ĥ (52)

= OP (1/(log n)2) (53)

because Ĥ is consistent. The remaining part of Dn will require a bit more work and we will split

it according to the size of p̂k. Let εn = log n/n. Then

−
∑

k

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k =−

∑
k:p̂k≤εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k

−
∑

k:p̂k>εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k

(54)

Similarly to our previous argument, (1−p̃k)n

1−(1−p̃k)n is decreasing in p̃k. So the second summation on the

right side is

−
∑

k:p̂k>εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k ≤

(1− εn)n

1− (1− εn)n
Ĥ (55)

= OP (1/n) (56)

For the remaining summation, we use the fact that p̃k ≥ Ĉ/n and the monotonicity argument once

more.

−
∑

k:p̂k≤εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k ≤ − (1− Ĉ/n)n

1− (1− Ĉ/n)n

∑
k:p̂k≤εn

p̂k log p̂k (57)

By the consistency of Ĉ, the leading term converges to the constant e−1/(1 − e−1) and can be

ignored. Since − log p̂k ≤ log n,

−
∑

k:p̂k≤εn

p̂k log p̂k ≤ log n
∑

k:p̂k≤εn

p̂k (58)
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We split the summation once last time, but according to the size of pk.

log n
∑

k:p̂k≤εn

p̂k ≤ log n

 ∑
k:pk>1/

√
n

εn +
∑

k:pk≤1/
√

n

p̂k

 (59)

≤ (log n)2√
n

+ log n
∑

k:pk≤1/
√

n

p̂k, (60)

where we have used the fact that |{k : pk > 1/
√
n}| ≤

√
n. Taking expectation, applying Lemma 2

and Markov’s Inequality shows that

= log n
∑

k:pk≤1/
√

n

p̂k = OP (1/ log n) (61)

The proof is complete because (log n)2/
√
n is also O(1/ log n).
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